Active Semi-Supervised Learning using Submodular Functions
نویسندگان
چکیده
We consider active, semi-supervised learning in an offline transductive setting. We show that a previously proposed error bound for active learning on undirected weighted graphs can be generalized by replacing graph cut with an arbitrary symmetric submodular function. Arbitrary non-symmetric submodular functions can be used via symmetrization. Different choices of submodular functions give different versions of the error bound that are appropriate for different kinds of problems. Moreover, the bound is deterministic and holds for adversarially chosen labels. We show exactly minimizing this error bound is NP-complete. However, we also introduce for any submodular function an associated active semi-supervised learning method that approximately minimizes the corresponding error bound. We show that the error bound is tight in the sense that there is no other bound of the same form which is better. Our theoretical results are supported by experiments on real data.
منابع مشابه
Submodular Optimization for Efficient Semi-supervised Support Vector Machines
In this work we present a quadratic programming approximation of the Semi-Supervised Support Vector Machine (S3VM) problem, namely approximate QP-S3VM, that can be efficiently solved using off the shelf optimization packages. We prove that this approximate formulation establishes a relation between the low density separation and the graph-based models of semi-supervised learning (SSL) which is ...
متن کاملAspects of Submodularity Workshop Titles and Abstracts Title: Learning Submodular Mixtures; and Active/semi-supervised Learning Joint Work with Title: Multicommodity Flows and Cuts in Polymatroidal Networks
We discuss several recent applications of submodularity to machine learning. First, we present a class of submodular functions useful for document summarization. We show the best ever results on for both generic and query-focused document summarization on widely used and standardized evaluations. We then further improve on these results using a new method to learn submodular mixtures in a large...
متن کاملLearning symmetric non-monotone submodular functions
We prove a new structural result for symmetric submodular functions. We use that result to obtain an efficient algorithm for approximately learning such functions in the passive, supervised learning setting. We also complement this result with a nearly matching lower bound. Our work provides the first results for learning a large class of non-monotone submodular functions under general distribu...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملSome Results about the Contractions and the Pendant Pairs of a Submodular System
Submodularity is an important property of set functions with deep theoretical results and various applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization. Nowadays submodular functions optimization has been attracted by many researchers. Pendant pairs of a symmetric...
متن کامل